Safety Laboratory-MD Team

Report No.:	RA/2013/90003			
Page:	1	of	16	

SHUN HU TECHNOLOGY CO., LTD. No.21, Zhonggong Rd., Xihu Township, Changhua County 514, Taiwan

Item	Information
Product Description	Industrial radio remote control systems
Manufacturer	SHUN HU TECHNOLOGY CO., LTD.
Model Number	Transmitters: K1212
Woder Number	Receiving units: HM series
	Transmitters:
Series Model(s)	K1210,K1208,K1206,K1204,K1202,K1200,K1010,K1008,K1006,K1004,K1002,K1000,
Series Model(S)	K808,K806,K804,K802,K800,K606,K604,K602,K600,K404,K402,K400,K202,K200
	Receiving units: HS series, W series, H series
Software Revsion	None

The following merchandise was submitted and identified by the vendor as:

Requirement:

Test Procedures		
Title	Rev.	
EN ISO 13849-1 Safety of machinery – Safety-related parts of control system Part 1:General principles for design	2008/AC:2009	

Result:

Conclusion The result of performance level (PL) for the design of safety function of type model FSD of CNC Drilling comply with the requirement and acceptance conditions of EN ISO 13849-1: 2008/AC:2009. The detailed description of test result, please see attached sheet(s).

Signed for and on behalf of

SGS TAIWAN Ltd.

Robert Chang:

Robert Chang Assist. Supervisor

Jason L.

Jason Lin Approver

Safety Laboratory-MD Team

Report No.:	RA/	003	
Page:	2	of	16

Date of Tests:

Test Started	Test Completed
January 1, 2014	November 18, 2014

Test Equipment:

Name	Brand	Model	Serial No.
NoteBook	Lenovo	L430	
Windows 7 Operating System	Microsoft	Windows 7	

Test Device Photo:

		Device	Photo		
			tters —		
K1200 242X 57 X 51 mm 389g	K1000 242 X 57 X 51 mm 389g*	K800 193 X 57 X 51 mm 325g*	K600 193 X 57 X 51 mm 325g*	K400 193X 57 X 51 mm 325g*	K200 193X 57 X 51 mm 325g*
1011. 12 <u>.</u>		Receiving	units		

Safety Laboratory-MD Team

 Report No.:
 RA/2013/90003

 Page:
 3
 of
 16

Contents of Report

- 1. THE PL RESULTS OF SAFETY FUNCTIONS
- 2. HAZARD IDENTIFICATION AND RISK ASSESSMENT
- 3. OUT LOOKING OF THE PRODUCT
- 4. BLOCK DIAGRAM AND CALCULATION INFORMATION
- 5. COMPONENTS DATASHEET
- 6. EVALUATION REPORT (GENERATED BY SISTEMA SOFTWARE)
- 7. ELECTRICAL CIRCUIT DIAGRAM

Safety Laboratory-MD Team

Report No.:	RA/2013/90003		
Page:	4	of	16

1. THE PL RESULTS OF SAFETY FUNCTIONS

The results of performance level (PL) for the design of safety function of type model Industrial radio remote control systems were evaluated and calculated in accordance with the standards of EN 13557:2003+A2:2008 and EN ISO 13849-1:2008.

1.1 Safety function check list

Item	Description of safety function	SF ID No	Remark
a)	Emergency stop function	SF1	Safe stop all hazardous movements by STO

Safety Laboratory-MD Team

Report No.:	RA/2013/90003			
Page:	5	of	16	

1.2 Safety function performance level (PL) requirement and results

No.	Safety functions	PLr	PL	PFH[1/h]	Verdict
SF1	Emergency stop function: Emergency stop control for safe stop of all motors	d	е	9.22E-8	Р

Abbreviations: ok / P = passed fail / F = failed n.a. / N = test case does not apply to the test object

Safety Laboratory-MD Team

 Report No.:
 RA/2013/90003

 Page:
 6
 of
 16

2. HAZARD IDENTIFICATION AND RISK ASSESSMENT

Risk graph according to EN ISO 12100

Risk graph is a method to assess the risks, associated with machinery, which makes use of a risk graph. This method allows performing hazard identification, risk estimation, risk reduction and risk evaluation to obtain the aimed goal of risk reduction. The risk assessment is done in two steps:

- First a new machine or an existing machine is assessed, risk reduction means are decided and implemented;
- Then a new risk assessment is made, taking into account the implemented risk reduction measures, including new risks that they may introduce, to verify that the risks have been reduced to the appropriate level; this phase is done iteratively, until appropriate level of risk has been achieved.

This method can be used for a machine under development, construction or already installed. People who design, maintain, use or are in charge of its safety can use this method after an appropriate training.

The risk graph for risk estimation, each hazardous situation is described, using the four hazardous conditions (hazard, hazardous situation, hazardous event, possible harm) as defined in EN ISO 12100. A risk index is then calculated using the risk graph given in following Figure , based on the four following parameters, corresponding to the four elements of risk as defined in EN ISO 12100, each one having its particular limits:

Severity of the harm: S

- S1 light injury (usually reversible; examples: scratch, laceration, bruise, light wound requiring first aid, etc.)
- S2 serious injury (usually irreversible, including fatality); examples : broken or torn-out or crushed member; fracture; serious injury with stitch, major musculoskeletal trouble (MST), fatality, etc.

Frequency and/or duration of exposure to hazard: F

- F1 twice or less by work shift or less than 15 min cumulated exposure by work shift;
- F2 more than twice by work shift or more than 15 min cumulated exposure by work shift.

Possibility of avoiding hazard or limiting harm: P

• P1 possible under some conditions:

- If parts move at a speed less than 0,25 ms⁻¹

AND the exposed worker is familiar with the risks and with indications of its apparition;

- depending of particular conditions (temperature, noise, ergonomic, etc.)
- P2 impossible.

Safety Laboratory-MD Team

Report No.:	RA/	003	
Page:	7	of	16

Key

- 1 starting point for evaluation of safety function's contribution to risk reduction
- L low contribution to risk reduction
- H high contribution to risk reduction
- PL_r required performance level

Risk parameters:

- S severity of injury
- S1 slight (normally reversible injury)
- S2 serious (normally irreversible injury or death)
- F frequency and/or exposure to hazard
- F1 seldom-to-less-often and/or exposure time is short
- F2 frequent-to-continuous and/or exposure time is long
- P possibility of avoiding hazard or limiting harm
- P1 possible under specific conditions
- P2 scarcely possible

Safety Laboratory-MD Team

Report No.:	RA/	2013/90	003
Page:	8	of	16

3. Out looking of the product

2 X 260 X 9 2950g **Receiving units**

HS series 190 X 184 X 64 mm 1800g

188 X 120 X 65 mm 1595g

142 X 141 X 59 mm 403g

Safety Laboratory-MD Team

 Report No.:
 RA/2013/90003

 Page:
 9
 of
 16

4. BLOCK DIAGRAM AND CALCULATION INFORMATION

SF1: Emergency stop control for safe stop of all motors

Safety function:

Emergency stop function, STO - safe torque off by actuation of an emergency stop device

Functional description:

This assessment evaluates the E-stop control on the equipment (the control pendant has a E-stop control switch. The E-stop control switch stops radio transmission from the pendant. This loss of radio communication causes the receiver to de-energize the stop relays and to therefore switch off the output within 500 milliseconds).

Design features:

- Basic safety principles and well-tried safety principles are being used.
- The emergency stop device is switching devices with direct opening contactors in accordance with IEC 60947-5-1.
- EMS is standard emergency stop device to EN ISO 13850.

Block Diagram:

Components description:

Element	Description	Maker	Model No.
SW	Emergency stop button	FUJI	AGX001
Master MCU	Micro Controller	MICROCHIP	PIC16LF193X
Slave MCU	Micro Controller	MICROCHIP	PIC16LF1829
Relay A, B	Control Relay	SCHRACK	SR2M

Safety Laboratory-MD Team

Report No.:	RA/2	2013/90	003
Page:	10	of	16

SF1: Emergency stop control for safe stop of all motors

Elements parameters

Calculation of MTTFd of the safety control system:

Element	Value B10d(cycles)	MTTFd	PFH[1/h]	PL
SW	100,000**[D1]	-	-	-
Master MCU	-	2,433*[D2]	-	-
Slave MCU	-	2,433*[D2]	-	-
Relay A, B	20,000,000**[D3]	-	-	-

*: according to manufacturer data, see Components Datasheet of chapter 5.

**: according to Table C.1 of EN ISO 13849-1.

Assumed operation conditions:

With B_{10d} and n_{op} , the mean number of annual operations, MTTFd for components can be calculated as:

- d_{op}: 300 days (per year)
- hop: 16 hrs (2 shifts × per day)
- t_{cycle} : 120 min. × 60 = 7200 sec. (per cycle)

The Quantification of DCavg:

Element	DC(%)	Remark
SW	99	Safety switches in accordance with IEC/EN
		00947-3-1
Master MCU	90	Acc. to manufacturer data
Slave MCU	90	Acc. to manufacturer data
Relay A, B	99	Monitoring by Micro Controller Master MCU and Slave MCU

Category and CCF:

Category	3	Designed and constructed in accordance with category 3:
		11 i_m $L1$ m O1
		c
		12 i_m $L2$ i_m $O2$
CCF	75	See below table

Safety Laboratory-MD Team

Report No.:	RA/2	2013/90	003
Page:	11	of	16

SF1: Emergency stop control for safe stop of all motors

CCF evaluation:

No.	Measure against CCF	Full Score	Judge Score
1	Separation/ Segregation		
	Physical separation between signal paths: separation in	15	15
	wiring/piping, sufficient clearances and creep age distances		
	on printed-circuit boards.		
2	Diversity		
	Different technologies/design or physical principles are used,	20	0
	for example: first channel programmable electronic and		
	second channel hardwired, kind of initiation, pressure and		
	temperature, Measuring of distance and pressure, digital and		
2	analog. Components of different manufactures.		
5	Design/apprication/experience		
3.1	Protection against over-voltage, over-pressure, over-current,	15	15
	etc.		
3.2	Components used are well-tried.	5	5
4	Assessment/analysis	-	-
	Are the results of a failure mode and effect analysis taken	5	0
	into account to avoid common-cause-failures in design.		
5	Competence/training		
	Have designers/ maintainers been trained to understand the	5	5
	causes and consequences of common cause failures?		
6 Environmental			
6.1	Prevention of contamination and electromagnetic	25	25
	compatibility (EMC) against CCF in accordance with		
	appropriate standards. Fluidic systems: filtration of the		
	pressure medium, prevention of dirt intake, drainage of		
	manufacturers' requirements concerning purity of the		
	pressure medium Electric systems: Has the system been		
	checked for electromagnetic immunity, e.g. as specified in		
	relevant standards against CCF? For combined fluidic and		
	electric systems, both aspects should be considered.		
6.2	Other influences Have the requirements for immunity to all	10	10
	relevant environmental influences such as, temperature,		
	shock, vibration, humidity (e.g. as specified in relevant		
	standards) bee considered?		
	Total	[max. Achievable 100]	75
Total score		Measures for avoiding	ng CCF ^a
65 or better		Meets the requiremen	ts
Less than 65 Process failed \rightarrow choose additio measures		ose additional	
^a Where technological measures a	re not relevant, points attached to this column can be considered	in the comprehensive c	alculation.

Result:

The whole safety function system, through the SISTEMA calculation (see chapter 6), its performance level: e, PFH: 9.22E-8.

Safety Laboratory-MD Team

Report No.:	RA/2	2013/90	003
Page:	12	of	16

5. COMPONENTS DATASHEET

See the following pages

[D1] Components Datasheet:

Element	Description	Maker	Model No.
EMS	Emergency stop button	FUJI	AGX001

B10d = 100,000

Contact block Terminal Type Solder/Tab AGX001 Wire-wrap AGX001–W

Standards approx	∎ Standards approved		
UL508	File No. E44592		
CSA C22.2 No.14	File No. LR20479 (except for AH165-2Z, 2ZE, 2SZ, 2SZE)		
	File No. LR84365 (for AH165-2Z, 2ZE, 2SZ, 2SZE)		
TÜV: EN60947-5-1	Pushbutton, illuminated pushbutton: R9250087		
	Selector (except for AH165-2H, SH), illuminated selector: R9250088		
	Selector (for AH165-2H, SH): R9250087		
	Pilot lights: R9250089		

Safety Laboratory-MD Team

 Report No.:
 RA/2013/90003

 Page:
 13 of 16

Specifications (Indoor use)	
Item	AH165-2
Rated insulation voltage	250V AC/DC
Ambient temperature (no condensation or no icing)	-10 to +70°C *1
Humidity	45 to 85%RH (at –5 to +40°C), no condensation or no icing
Durability Mechanical (operations) Electrical	Pushbutton and illuminated pushubutton switch Momentary action: 1 million Alternate action: 250,000 Push-lock, turn-reset: 100,000 With selector ring: 250,000 Selector and illuminated selector switch: 250,000* ² 100,000 (220V AC 0.7A)
Dielectric strength	2000V AC, 1 minute (Between lamp and contact terminals: 1500V AC, 1 minute)
Conditional short-circuit current	1000A
Short-circuit protective device	Fuse 1A
Pollution degree	3
Vibration	Resonance: 10 to 55Hz, double amplitude 0.1mm Constant: 16.7Hz, double amplitude 3mm
Shock	Malfunction durability: 100m/s² Mechanical durability: 500m/s²
Operating frequency	1200 operation/hour (on-load factor: 40%)
Insulation resistance	100MΩ or more (500V DC megger)
Operator protection	IP65

Safety Laboratory-MD Team

Report No.:	RA/2013/90003		
Page:	14	of	16

[D2] Components Datasheet:

Element	Description	Maker	Model No.
Master MCU	Micro Controller	MICROCHIP	PIC16LF193X
Slave MCU	Micro Controller	MICROCHIP	PIC16LF1829

MTTFd = 2,433

HDR and HE Flash Non-polyimide process Qualification Report #C-081187 Rev.B

Activation Energy	0.6 eV
Derated Temperature	55°C

	Infant Mortality	Total Life	MTTF (Years)
Device Hours	31,872	167,328	N/A
Fit Rate - 50% Confidence	74	14	8,081
Fit Rate - 60% Confidence	98	19	6,111
Fit Rate - 90% Confidence	246	47	2,433
	Best Estimated Failure Rate (%/KHR)		
Infant Mortality	0.0074		
Total Life	0.0014		

Safety Laboratory-MD Team

Report No.:	RA/2013/90003			
Page:	15	of	16	

[D3] Components Datasheet:

Element	Description	Maker	Model No.
Relay A, B	Control Relay	SCHRACK	SR2M

B10d = 1,000,000

General Purpose Relays Force Guided Relays

SCHRACK

F0188-0

Force Guided Relay SR2M

2 pole relay with force guided contacts according to EN 50205

Reinforced insulation between poles

Typical applications Emergency shut-off, press control, machine control, elevator and escalator control, safety relays

Approvals				
VDE 116064, UL E214025, TUV 968	/EZ 111, CQC0617015579			
Technical data of approved types on request	t			
Contact Data				
Contact arrangement	1 form A + 1 form B contacts			
	(1 NO + 1 NC) or			
	2 form C contacts (2 CO)			
According EN50205 only 1NO / 1	NC (11-14 and 22-21 or 12-11 and			
21-24) shall be used as force guid	led contacts.			
Rated voltage	250VAC			
Max. switching voltage	400VAC			
Rated current	6A			
Contact material	AgNI			
Contact style	single contact, force guided			
1 form A + B, 1 NO + 1NC	type A according to EN 50205			
2 form C, 2CO	type B according to EN 50205			
Min. recommended contact load	5V/10mA			
Initial contact resistance	≤100mΩ at 1A, 24VDC			
Frequency of operation, with (without	S2052 at TOMA, SVDC			
Contact rations, IEC60947-5-1	load brouthin			
on 1 form A (NO) contact	AC15-3A			
on Fiorm A (NO) contact	DC12-64			
Mechanical endurance	10x10 ⁶ operations			
Ween an itear of Idenan itee	Tox to operations			
Max. DC load breaking capacity	Electrical endurance			
200	250VAC			
resistive load	O resistive load			
100	on Two contact			
	AgNi			
2 ³⁰	10			
ğ 20				
	0 1 2 3 4 5 6 7 8			
starsea DC current [A]	swarc Switching current [A]			

Coil Data (contunied)

Coil ver	sions, DC-co	il			
Coll	Rated	Operate	Release	Col	Rated coll
code	voltage	voltage	voltage	resistance	power
	VDC	VDC	VDC	Ω±10%1)	mW
015	15	11.3	1.5	321	701
018	18	13.5	1.8	483	671
021	21	16	2.1	630	700
024	24	18	2.4	823	700
036	36	27	3.6	1851	700
040	40	30	4.0	2286	700
048	48	36	4.8	32911)	700
060	60	45	6	5142 ¹⁾	700
080	85	63.8	8.5	9143 ¹⁾	790
110	110	83	11	172851)	700
1) Coll reals	top.co. 100/				

 $^{1)}$ Coll resistance ±12%. All figures are given for coll without pre-energization, at ambient temperature +23°C.

Insulation

Safety Laboratory-MD Team

 Report No.:
 RA/2013/90003

 Page:
 16
 of
 16

6. EVALUATION REPORT (GENERATED BY SISTEMA SOFTWARE)

7. ELECTRICAL CIRCUIT DIAGRAM

— — — THE END — — —